Floor of x+m over n/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m, n \in \Z$ such that $n > 0$.

Let $x \in \R$.


Then:

$\floor {\dfrac {x + m} n} = \floor {\dfrac {\floor x + m} n}$

where $\floor x$ denotes the floor of $x$.


Proof

Let:

$y = x - \floor x$
$M = \floor x + m$

We now have:

$(1): \quad 0 \le y < 1$

and thus:

$\floor y = 0$

By Division Theorem, we can write:

$(2): \quad M = k n + r$

with $k \in \Z$ and $0 \le r \le n - 1$.

By $(1)$ and $(2)$:

$(3): \quad 0 \le y + r < 1 + n - 1 = n$


We have:

\(\ds \floor {\frac {y + M} n}\) \(=\) \(\ds \floor {\frac {y + k n + r} n}\) from $(2)$
\(\ds \) \(=\) \(\ds \floor {k + \frac {y + r} n}\)
\(\ds \) \(=\) \(\ds k + \floor {\frac {y + r} n}\) Floor of Number plus Integer
\(\ds \) \(=\) \(\ds k\) from $(3)$
\(\ds \) \(=\) \(\ds \floor {\frac M n}\)


Substituting $y$ and $M$, we obtain:

\(\ds \floor {\frac {x + m} n}\) \(=\) \(\ds \floor {\frac {x - \floor x + \floor x + m} n}\)
\(\ds \) \(=\) \(\ds \floor {\frac {y + M} n}\)
\(\ds \) \(=\) \(\ds \floor {\frac M n}\)
\(\ds \) \(=\) \(\ds \floor {\frac {\floor x + m} n}\)

and the result follows.

$\blacksquare$


Sources