Forward Difference of Harmonic Number Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $H_x$ denote the harmonic number function.

Then:

$\Delta H_x = \dfrac 1 {x + 1}$

where $\Delta H_x$ denotes the forward difference operator.


Proof

From the definitions:

\(\ds \Delta H_x\) \(=\) \(\ds H_{x + 1} - H_x\) Definition of Forward Difference Operator
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^{x + 1} \frac 1 k - \sum_{k \mathop = 1}^x \frac 1 k\) Definition of Harmonic Number
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^x \frac 1 k + \frac 1 {x + 1} - \sum_{k \mathop = 1}^x \frac 1 k\)
\(\ds \) \(=\) \(\ds \frac 1 {x + 1}\)

$\blacksquare$