Fourth Power Modulo 5

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z$ be an integer.

Then:

$n^4 \equiv m \pmod 5$

where $m \in \set {0, 1}$.


Proof

By Congruence of Powers:

$a \equiv b \pmod 5 \iff a^4 \equiv b^4 \pmod 5$

so it is sufficient to demonstrate the result for $n \in \set {0, 1, 2, 3, 4}$.


Thus:

\(\ds 0^4\) \(=\) \(\, \ds 0 \, \) \(\, \ds \equiv \, \) \(\ds 0\) \(\ds \pmod 5\)
\(\ds 1^4\) \(=\) \(\, \ds 1 \, \) \(\, \ds \equiv \, \) \(\ds 1\) \(\ds \pmod 5\)
\(\ds 2^4\) \(=\) \(\, \ds 16 \, \) \(\, \ds \equiv \, \) \(\ds 1\) \(\ds \pmod 5\)
\(\ds 3^4\) \(=\) \(\, \ds 81 \, \) \(\, \ds \equiv \, \) \(\ds 1\) \(\ds \pmod 5\)
\(\ds 4^4\) \(=\) \(\, \ds 256 \, \) \(\, \ds \equiv \, \) \(\ds 1\) \(\ds \pmod 5\)

The result follows.

$\blacksquare$