Fundamental Theorem of Algebra/Proof 6

From ProofWiki
Jump to navigation Jump to search

Theorem

Every non-constant polynomial with coefficients in $\C$ has a root in $\C$.


Proof

Let $p: \C \to \C$ be a complex, non-constant polynomial.

Aiming for a contradiction, suppose that $\map p z \ne 0$ for all $z \in \C$.

Therefore by Reciprocal of Holomorphic Function $\dfrac 1 {\map p z}$ is entire.

\(\ds 0\) \(<\) \(\ds \cmod {\dfrac 1 {\map p 0} }\)
\(\ds \) \(=\) \(\ds \cmod {\frac 1 {2 \pi i} \oint_{\set {w \in \C : \cmod w = R} } \frac {\rd z} {z \cdot \map p z} }\) Cauchy's Integral Formula
\(\ds \) \(\le\) \(\ds \frac 1 {2 \pi} \max \limits_{\size z \mathop = R} \paren {\frac 1 {\size {z \cdot \map p z} } } 2 \pi R\) Estimation Lemma for Contour Integrals
\(\ds \) \(=\) \(\ds \max \limits_{\size z \mathop = R} \frac 1 {\size {\map p z} }\)
\(\ds \) \(\to\) \(\ds 0\) as $R \to +\infty$

This is a contradiction.

$\blacksquare$