G-Tower is Nest/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Lemma for $g$-Tower is Nest

Let $M$ be a class.

Let $g: M \to M$ be a progressing mapping on $M$.

Let $M$ be a $g$-tower.


Then:

$\forall x, y \in M: \map g x \subseteq y \lor y \subseteq x$


Proof

First a lemma:

Lemma 1

Let $M$ be a class.

Let $g: M \to M$ be a progressing mapping on $M$.

Let $\RR$ be a relation defined as:

$\forall x, y \in M: \tuple {x, y} \in \RR \iff \map g x \subseteq y \lor y \subseteq x$

where $\lor$ denotes disjunction (inclusive "or").


Then $\RR$ satisfies the $3$ conditions $\text D_1$, $\text D_2$ and $\text D_3$ of the Double Superinduction Principle.


That is:

\((\text D_1)\)   $:$     \(\ds \forall x \in M:\) \(\ds \map \RR {x, \O} \)      
\((\text D_2)\)   $:$     \(\ds \forall x, y \in M:\) \(\ds \map \RR {x, y} \land \map \RR {y, x} \implies \map \RR {x, \map g y} \)      
\((\text D_3)\)   $:$     \(\ds \forall x \in M: \forall C: \forall y \in C:\) \(\ds \map \RR {x, y} \implies \map \RR {x, \bigcup C} \)      where $C$ is a chain of elements of $M$

$\Box$


By definition of $g$-tower:

$M$ is minimally superinductive under $g$.


Hence by the Principle of Superinduction:

$\forall x, y \in M: \tuple {x, y} \in \RR$

That is:

$\forall x, y \in M: \map g x \subseteq y \lor y \subseteq x$

$\blacksquare$


Sources