# Gamma Function of One Half/Proof 4

Jump to navigation
Jump to search

## Theorem

- $\map \Gamma {\dfrac 1 2} = \sqrt \pi$

Its decimal expansion starts:

- $\map \Gamma {\dfrac 1 2} = 1 \cdotp 77245 \, 38509 \, 05516 \, 02729 \, 81674 \, 83341 \, 14518 \, 27975 \ldots$

## Proof

\(\displaystyle \Gamma \left({\frac 1 2}\right)\) | \(=\) | \(\displaystyle \frac {0!} {2^0 0!} \sqrt \pi\) | Gamma Function of Positive Half-Integer | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \sqrt \pi\) | Factorial of Zero |

$\blacksquare$