General Double Induction Principle/Proof

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M$ be a class.

Let $g: M \to M$ be a mapping on $M$.


Let $M$ be a minimally inductive class under $g$.

Let $\RR$ be a relation which satisfies the following conditions:

\(({\text D'}_1)\)   $:$     \(\ds \forall x \in M:\)    \(\ds \map \RR {x, 0} \land \map \RR {0, x} \)   
\(({\text D'}_2)\)   $:$     \(\ds \forall x, y \in M:\)    \(\ds \paren {\map \RR {x, y} \land \map \RR {x, \map g y} \land \map \RR {\map g x, y} } \)   \(\ds \implies \)   \(\ds \map \RR {\map g x, \map g y} \)      


Then:

$\forall x, y \in M: \map \RR {x, y}$


Proof




Sources