General Linear Group to Determinant is Homomorphism/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GL {n, \R}$ be the general linear group over the field of real numbers.

Let $\struct {\R_{\ne 0}, \times}$ denote the multiplicative group of real numbers.


Let $\det: \GL {n, \R} \to \struct {\R_{\ne 0}, \times}$ be the group homomorphism:

$\mathbf A \mapsto \map \det {\mathbf A}$

where $\map \det {\mathbf A}$ is the determinant of $\mathbf A$.


The kernel of the $\det$ mapping is the special linear group $\SL {n, \R}$.


Proof

From General Linear Group to Determinant is Homomorphism:

$\det$ is a group homomorphism.


The special linear group $\SL {n, \R}$ is the subset of $\GL {n, \R}$ such that:

$\forall \mathbf A \in \SL {n, \R}: \map \det {\mathbf A} = 1$

From Real Multiplication Identity is One:

$1$ is the identity of the multiplicative group of real numbers.

It follows by definition that $\SL {n, \R}$ is the kernel of the $\det$ mapping.

$\blacksquare$


Sources