General Periodicity Property/Corollary
Jump to navigation
Jump to search
Theorem
Let $f: \R \to \R$ be a real function.
Then $L$ is a periodic element of $f$ if and only if:
- $\forall x \in \R: \map f {x \bmod L} = \map f x$
where $x \bmod L$ is the modulo operation.
Proof
Necessary Condition
Let $f: \R \to \R$ be a real function with a periodic element $L$.
Then:
\(\ds \map f x\) | \(=\) | \(\ds \map f {n L + r} \quad 0 < r < \size L\) | Definition of Quotient | |||||||||||
\(\ds \) | \(=\) | \(\ds \map f r\) | General Periodicity Property | |||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x \bmod L}\) |
$\Box$
Sufficient Condition
Let $f: \R \to \R$ be a real function such that for all $x \in \R$:
- $\map f {x \bmod L} = \map f x$
Let $n = \floor {\dfrac x L}$.
Then:
\(\ds \map f {x + L}\) | \(=\) | \(\ds \map f {\paren {x + L} \bmod L}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x + L - \floor {\frac {x + L} L} L}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x + L - \paren {n + 1} L}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x - n L}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f {x \bmod L}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f x\) |
$\blacksquare$