# General Stokes' Theorem

Jump to: navigation, search

## Theorem

Let $\omega$ be a smooth $\left({n - 1}\right)$-form with compact support on a smooth $n$-dimensional oriented manifold $X$.

Let the boundary of $X$ be $\partial X$.

Then:

$\displaystyle \int_{\partial X} \omega = \int_X \mathrm d \omega$

where $\mathrm d \omega$ is the exterior derivative of $\omega$.

## Proof

### A Special Case

First we suppose that there is a chart $x = \left({x_1, \ldots, x_n}\right) : V \subseteq X \to \R^n$ such that $\operatorname{supp} \omega \subseteq V$.

We may suppose that $V$ is relatively compact.

Thus, by composing $x$ with a translation, we may suppose that:

$\displaystyle x \left({V}\right) \subseteq \mathbb H^n = \left\{ {\left({x_1, \ldots, x_n}\right) \in \R^n : x_1 < 0}\right\}$

We have, in the coordinates $x$:

$\displaystyle \omega = \sum_{i \mathop = 1}^n f_i \, \mathrm d x_1 \wedge \cdots \wedge \hat{\mathrm d x}_i \wedge \cdots \wedge \mathrm d x_n$

The forms $\hat{\mathrm d x}_i := \mathrm d x_1 \wedge \cdots \wedge \hat{\mathrm d x}_i \wedge \cdots \wedge \mathrm d x_n$ vanish on the tangent space to $\mathbb H^n$ for $i > 1$, so we have:

$(1):\quad \displaystyle \int_{\partial \mathbb H^n} \omega = \int_{\partial \mathbb H^n} f_1\hat{\mathrm d x}_1$

Moreover:

 $\displaystyle \mathrm d \omega$ $=$ $\displaystyle \sum_{i \mathop = 1}^n \, \mathrm d f_i \wedge \hat{\mathrm d x}_i$ $\displaystyle$ $=$ $\displaystyle \sum_{i \mathop = 1}^n \frac {\partial f} {\partial x_i} \mathrm d x_i \wedge \hat{\mathrm d x}_i$ $\displaystyle$ $=$ $\displaystyle \left({\sum_{i \mathop = 1}^n \frac {\partial f} {\partial x_i} }\right) \, \mathrm d x_1 \wedge \cdots \wedge \mathrm d x_n$

so that:

$\displaystyle \int_{\mathbb H^n} \mathrm d \omega = \sum_{i \mathop = 1}^n \int_{\mathbb H^n} \frac {\partial f_i} {\partial x_i} \, \mathrm d x_1 \wedge \cdots wedge \mathrm d x_n$

If $i > 1$:

 $\displaystyle \int_{\mathbb H^n} \frac {\partial f_i} {\partial x_i} \, \mathrm d x_1 \wedge \cdots \wedge \mathrm d x_n$ $=$ $\displaystyle \int \cdots \int \left({\int_{-\infty}^\infty \frac {\partial f_i} {\partial x_i} }\right) \hat {\mathrm d x}_i$ Fubini's Theorem $\displaystyle$ $=$ $\displaystyle 0$

For $i = 1$:

 $\displaystyle \int_{\mathbb H^n} \frac {\partial f_1} {\partial x_1} \mathrm d x_1 \wedge \cdots \wedge \mathrm d x_n$ $=$ $\displaystyle \int \cdots \int \left({\int_{-\infty}^0 \frac {\partial f_i} {\partial x_i} }\right) \hat {\mathrm d x}_i$ Fubini's Theorem $\displaystyle$ $=$ $\displaystyle \int_{\partial \mathbb H^n} f_1 \hat{\mathrm d x}_1$

So:

$\displaystyle \int_{\mathbb H^n} \mathrm d \omega = \int_{\partial \mathbb H^n} f_1 \, \hat{\mathrm d x}_1$

Together with $(1)$, this establishes the result.

$\Box$

### General Case

Choose a finite family of relatively compact charts $V_1, \ldots, V_k$ on $X$ such that

$\displaystyle \operatorname{supp} \omega \subseteq \bigcup_{i \mathop = 1}^k V_i$

Choose a partition of unity:

$\chi_1, \ldots, \chi_k$

with $\chi_1 + \cdots + \chi_k = 1$ subordinate to the cover $\left\{ {V_1, \ldots, V_k}\right\}$.

Put $\omega_i = \chi_i \omega$.

Then we have:

 $\displaystyle \omega$ $=$ $\displaystyle \left({\chi_1 + \cdots + \chi_k}\right) \omega$ $\displaystyle$ $=$ $\displaystyle \omega_1 + \cdots + \omega_k$

Moreover, $\operatorname{supp} \omega_i \subset V_i$ by definition.

Therefore by the special case above, Stokes' theorem holds for each $\omega_i$, so we have:

$\displaystyle \int_X \mathrm d \omega = \sum^k_{i \mathop = 1} \int_x \mathrm d \omega_i = \sum^k_{i \mathop = 1} \int_{\partial X} \omega_i = \int_{\partial X} \omega$

$\blacksquare$

## Source of Name

This entry was named for George Stokes.