Generated Sigma-Algebra Contains Generated Dynkin System
Jump to navigation
Jump to search
Theorem
Let $X$ be a set.
Let $\GG \subseteq \powerset X$ be a collection of subsets of $X$.
Then $\map \delta \GG \subseteq \map \sigma \GG$.
Here $\delta$ denotes generated Dynkin system, and $\sigma$ denotes generated $\sigma$-algebra.
Proof
By Sigma-Algebra is Dynkin System, $\map \sigma \GG$ is a Dynkin system.
The definition of $\map \delta \GG$ now ensures that $\map \delta \GG \subseteq \map \sigma \GG$.
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $5.3$