Generating Function for Binomial Coefficients

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {a_n}$ be the sequence defined as:

$\forall n \in \N: a_n = \begin{cases}

\dbinom m n & : n = 0, 1, 2, \ldots, m \\ 0 & : \text{otherwise}\end{cases}$

where $\dbinom m n$ denotes a binomial coefficient.


Then the generating function for $\sequence {a_n}$ is given as:

$\ds \map G z = \sum_{n \mathop = 0}^m \dbinom m n z^n = \paren {1 + z}^m$


Proof

\(\ds \paren {1 + z}^m\) \(=\) \(\ds \sum_{n \mathop = 0}^m \binom m n z^n\) Binomial Theorem


The result follows from the definition of a generating function.

$\blacksquare$


Sources