Generating Function for Sequence of Powers of Constant/Examples/(b+1)^n - b^n

From ProofWiki
Jump to navigation Jump to search

Example of Generating Function for Sequence of Powers of Constant

Let $b \in \R_{>0}$ be a positive real number.

Let $\sequence {a_n}$ be the sequence defined as:

$\forall n \in \Z_{\ge 0}: a_n = \paren {b + 1}^n - b^n$


Then the generating function for $\sequence {a_n}$ is given as:

$\map G z = \dfrac z {\paren {1 - b z} \paren {1 - b z - z} }$


Proof

Let $\map {H_1} z$ be the generating function for $\sequence {r_n}$ where:

$r_n = b^n$

Then from Generating Function for Sequence of Powers of Constant:

$\map {H_1} z = \dfrac 1 {1 - b z}$


Let $\map {H_2} z$ be the generating function for $\sequence {s_n}$ where:

$s_n = \paren {b + 1}^n$

Then again from Generating Function for Sequence of Powers of Constant:

\(\ds \map {H_2} z\) \(=\) \(\ds \dfrac 1 {1 - \paren {b + 1} z}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {1 - b z - z}\)


From Linear Combination of Generating Functions:

\(\ds \map G z\) \(=\) \(\ds \map {H_2} z - \map {H_1} z\)
\(\ds \) \(=\) \(\ds \dfrac 1 {1 - b z - z} - \dfrac 1 {1 - b z}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {1 - b z} - \paren {1 - b z - z} } {\paren {1 - b z - z} \paren {1 - b z} }\)
\(\ds \) \(=\) \(\ds \dfrac z {\paren {1 - b z - z} \paren {1 - b z} }\)

$\blacksquare$


Sources