Geometric Distribution Gives Rise to Probability Mass Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a discrete random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.

Let $X$ have the geometric distribution with parameter $p$ (where $0 < p < 1$).


Then $X$ gives rise to a probability mass function.


Shifted Geometric Distribution

The same result applies to the shifted geometric distribution.


Let $Y$ be a discrete random variable on a probability space $\left({\Omega, \Sigma, \Pr}\right)$.

Let $Y$ have the shifted geometric distribution with parameter $p$ (where $0 < p < 1$).


Then $Y$ gives rise to a probability mass function.


Proof

By definition:

$\map \Omega X = \N = \set {0, 1, 2, \ldots}$
$\map \Pr {X = k} = p^k \paren {1 - p}$


Then:

\(\ds \map \Pr \Omega\) \(=\) \(\ds \sum_{k \mathop \ge 0} p^k \paren {1 - p}\) Definition of Geometric Distribution
\(\ds \) \(=\) \(\ds \paren {1 - p} \sum_{k \mathop \ge 0} p^k\)
\(\ds \) \(=\) \(\ds \paren {1 - p} \frac 1 {1 - p}\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds 1\)

The above result is valid, because $0 < p < 1$.


So $X$ satisfies $\map \Pr \Omega = 1$, and hence the result.

$\blacksquare$