Greek Anthology Book XIV: 51. - Problem
Jump to navigation
Jump to search
Problem
- $A$. I have what the second has and the third of what the third has.
- $B$. I have what the third has and the third of what the first has.
- $C$. And I have ten minae and the third of what the second has.
Solution
Let $a$, $b$ and $c$ (respectively) be what $A$, $B$ and $C$ have in minae.
We have:
\(\ds a\) | \(=\) | \(\ds b + \frac c 3\) | ||||||||||||
\(\ds b\) | \(=\) | \(\ds c + \frac a 3\) | ||||||||||||
\(\ds c\) | \(=\) | \(\ds 10 + \frac b 3\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 3 a\) | \(=\) | \(\ds 3 b + c\) | multiplying through by $3$ | ||||||||||
\(\ds 3 b\) | \(=\) | \(\ds 3 c + a\) | ||||||||||||
\(\ds 3 c\) | \(=\) | \(\ds 30 + b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 3 b\) | \(=\) | \(\ds 30 + b + a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds 2 b - 30\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 3 \paren {2 b - 30}\) | \(=\) | \(\ds 3 b + 10 + \frac b 3\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 18 b - 270\) | \(=\) | \(\ds 9 b + 30 + b\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 8 b\) | \(=\) | \(\ds 300\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds b\) | \(=\) | \(\ds \dfrac {300} 8\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 37 \frac 1 2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds 2 \paren {37 \frac 1 2} - 30\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 75 - 30\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 45\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds c\) | \(=\) | \(\ds 10 + \frac 1 3 \times {37 \frac 1 2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 10 + \frac 1 2 \frac {75} 3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 10 + \frac {25} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 22 \frac 1 2\) |
So:
- $A$ has $45$ minae
- $B$ has $37 \frac 1 2$ minae
- $C$ has $22 \frac 1 2$ minae.
$\blacksquare$
Sources
- 1918: W.R. Paton: The Greek Anthology Book XIV ... (previous) ... (next): $51$. -- Problem