Grothendieck Universe is Closed under Binary Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbb U$ be a Grothendieck universe.

Let $u, v \in \mathbb U$.


Then $u \cup v \in \mathbb U$.


Proof

If $\mathbb U = \O$, the claim is true.

Assume $\mathbb U \ne \O$.

By Nonempty Grothendieck Universe contains Von Neumann Natural Numbers, every von Neumann natural number is an element of $\mathbb U$.

In particular:

$2 = \set {\O, \set \O} \in \mathbb U$

Using $2$ as an indexing set, we remember that $0 = \O$ and $1 = \set \O$, and define:

\(\ds w_0\) \(:=\) \(\ds u\)
\(\ds w_1\) \(:=\) \(\ds v\)

This sets up the structures needed to exploit Grothendieck Universe: Axiom $(4)$ below.


Then:

\(\ds u, v\) \(\in\) \(\ds \mathbb U\)
\(\ds \leadsto \ \ \) \(\ds \set {u, v}\) \(\in\) \(\ds \mathbb U\) Grothendieck Universe: Axiom $(2)$
\(\ds \leadsto \ \ \) \(\ds \bigcup_{i \mathop \in 2} w_i = u \cup v\) \(\in\) \(\ds \mathbb U\) Grothendieck Universe: Axiom $(4)$

$\blacksquare$