Group Generated by Reciprocal of z and 1 minus z

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ denote the group generated by $\dfrac 1 z$ and $1 - z$.


Then $\struct {S, \circ}$ is a finite group of order $6$.


Proof

By definition:

$S = \set {f_1, f_2, f_3, f_4, f_5, f_6}$

where $f_1, f_2, \ldots, f_6$ are complex functions defined for all $z \in \C \setminus \set {0, 1}$ as:

\(\ds \map {f_1} z\) \(=\) \(\ds z\)
\(\ds \map {f_2} z\) \(=\) \(\ds \dfrac 1 {1 - z}\)
\(\ds \map {f_3} z\) \(=\) \(\ds \dfrac {z - 1} z\)
\(\ds \map {f_4} z\) \(=\) \(\ds \dfrac 1 z\)
\(\ds \map {f_5} z\) \(=\) \(\ds 1 - z\)
\(\ds \map {f_6} z\) \(=\) \(\ds \dfrac z {z - 1}\)


Also by definition, $\circ$ denotes composition of functions.


First it is necessary to establish the Cayley table for $\struct {S, \circ}$.

First note that it is apparent by definition of composition of functions that:

$\forall n: f_1 \circ f_n = f_n = f_n \circ f_1$


It remains to establish the rest of the compositions

\(\ds f_2 \circ f_2\) \(=\) \(\ds \dfrac 1 {1 - \dfrac 1 {1 - z} }\)
\(\ds \) \(=\) \(\ds \dfrac {1 - z} {1 - z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1} z\)
\(\ds \) \(=\) \(\ds f_3\)


\(\ds f_2 \circ f_3\) \(=\) \(\ds \dfrac 1 {1 - \dfrac {z - 1} z}\)
\(\ds \) \(=\) \(\ds \dfrac z {z - \paren {z - 1} }\)
\(\ds \) \(=\) \(\ds z\)
\(\ds \) \(=\) \(\ds f_1\)


\(\ds f_2 \circ f_4\) \(=\) \(\ds \dfrac 1 {1 - \dfrac 1 z}\)
\(\ds \) \(=\) \(\ds \dfrac z {z - 1}\)
\(\ds \) \(=\) \(\ds f_6\)


\(\ds f_2 \circ f_5\) \(=\) \(\ds \dfrac 1 {1 - \paren {1 - z} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 z\)
\(\ds \) \(=\) \(\ds f_4\)


\(\ds f_2 \circ f_6\) \(=\) \(\ds \dfrac 1 {1 - \dfrac z {z - 1} }\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1} {z - 1 - z}\)
\(\ds \) \(=\) \(\ds 1 - z\)
\(\ds \) \(=\) \(\ds f_5\)


\(\ds f_3 \circ f_2\) \(=\) \(\ds \dfrac {\dfrac 1 {1 - z} - 1} {\dfrac 1 {1 - z} }\)
\(\ds \) \(=\) \(\ds \paren {1 - z} \dfrac {1 - \paren {1 - z} } {1 - z}\)
\(\ds \) \(=\) \(\ds z\)
\(\ds \) \(=\) \(\ds f_1\)


\(\ds f_3 \circ f_3\) \(=\) \(\ds \dfrac {\dfrac {z - 1} z - 1} {\dfrac {z - 1} z}\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1 - z} z \dfrac z {z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {1 - z}\)
\(\ds \) \(=\) \(\ds f_2\)


\(\ds f_3 \circ f_4\) \(=\) \(\ds \dfrac {\dfrac 1 z - 1} {\dfrac 1 z}\)
\(\ds \) \(=\) \(\ds z \dfrac {1 - z} z\)
\(\ds \) \(=\) \(\ds 1 - z\)
\(\ds \) \(=\) \(\ds f_5\)


\(\ds f_3 \circ f_5\) \(=\) \(\ds \dfrac {\paren {1 - z} - 1} {1 - z}\)
\(\ds \) \(=\) \(\ds \dfrac z {z - 1}\)
\(\ds \) \(=\) \(\ds f_6\)


\(\ds f_3 \circ f_6\) \(=\) \(\ds \dfrac {\dfrac z {z - 1} - 1} {\dfrac z {z - 1} }\)
\(\ds \) \(=\) \(\ds \dfrac {z - \paren {z - 1} } {z - 1} \dfrac {z - 1} z\)
\(\ds \) \(=\) \(\ds \dfrac 1 z\)
\(\ds \) \(=\) \(\ds f_4\)


\(\ds f_4 \circ f_2\) \(=\) \(\ds \dfrac 1 {\dfrac 1 {1 - z} }\)
\(\ds \) \(=\) \(\ds 1 - z\)
\(\ds \) \(=\) \(\ds f_5\)


\(\ds f_4 \circ f_3\) \(=\) \(\ds \dfrac 1 {\dfrac {z - 1} z}\)
\(\ds \) \(=\) \(\ds \dfrac z {z - 1}\)
\(\ds \) \(=\) \(\ds f_6\)


\(\ds f_4 \circ f_4\) \(=\) \(\ds \dfrac 1 {1 / z}\)
\(\ds \) \(=\) \(\ds z\)
\(\ds \) \(=\) \(\ds f_1\)


\(\ds f_4 \circ f_5\) \(=\) \(\ds \dfrac 1 {1 - z}\)
\(\ds \) \(=\) \(\ds f_2\)


\(\ds f_4 \circ f_6\) \(=\) \(\ds \dfrac 1 {\dfrac z {z - 1} }\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1} z\)
\(\ds \) \(=\) \(\ds f_3\)


\(\ds f_5 \circ f_2\) \(=\) \(\ds 1 - \dfrac 1 {1 - z}\)
\(\ds \) \(=\) \(\ds \dfrac {1 - z - 1} {1 - z}\)
\(\ds \) \(=\) \(\ds \dfrac z {z - 1}\)
\(\ds \) \(=\) \(\ds f_6\)


\(\ds f_5 \circ f_3\) \(=\) \(\ds 1 - \dfrac {z - 1} z\)
\(\ds \) \(=\) \(\ds \dfrac {z - \paren {z - 1} } z\)
\(\ds \) \(=\) \(\ds \dfrac 1 z\)
\(\ds \) \(=\) \(\ds f_4\)


\(\ds f_5 \circ f_4\) \(=\) \(\ds 1 - \dfrac 1 z\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1} z\)
\(\ds \) \(=\) \(\ds f_3\)


\(\ds f_5 \circ f_5\) \(=\) \(\ds 1 - \paren {1 - z}\)
\(\ds \) \(=\) \(\ds z\)
\(\ds \) \(=\) \(\ds f_1\)


\(\ds f_5 \circ f_6\) \(=\) \(\ds 1 - \dfrac z {z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1 - z} {z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {1 - z}\)
\(\ds \) \(=\) \(\ds f_2\)


\(\ds f_6 \circ f_2\) \(=\) \(\ds \dfrac {\dfrac 1 {1 - z} } {\dfrac 1 {1 - z} - 1}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {1 - z} \dfrac {1 - z} {1 - \paren {1 - z} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 z\)
\(\ds \) \(=\) \(\ds f_4\)


\(\ds f_6 \circ f_3\) \(=\) \(\ds \dfrac {\dfrac {z - 1} z} {\dfrac {z - 1} z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1} z \dfrac z {z - 1 - z}\)
\(\ds \) \(=\) \(\ds 1 - z\)
\(\ds \) \(=\) \(\ds f_5\)


\(\ds f_6 \circ f_4\) \(=\) \(\ds \dfrac {\dfrac 1 z} {\dfrac 1 z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac 1 z \dfrac z {1 - z}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {1 - z}\)
\(\ds \) \(=\) \(\ds f_2\)


\(\ds f_6 \circ f_5\) \(=\) \(\ds \dfrac {1 - z} {1 - z - 1}\)
\(\ds \) \(=\) \(\ds \dfrac {z - 1} z\)
\(\ds \) \(=\) \(\ds f_3\)


\(\ds f_6 \circ f_6\) \(=\) \(\ds \dfrac {\dfrac z {z - 1} } {\dfrac z {z - 1} - 1}\)
\(\ds \) \(=\) \(\ds \dfrac z {z - 1} \dfrac {z - 1} {z - 1 - z}\)
\(\ds \) \(=\) \(\ds z\)
\(\ds \) \(=\) \(\ds f_1\)


Hence the Cayley table is established:


$\begin{array}{r|rrrrrr}

\circ & f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \\ \hline f_1 & f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \\ f_2 & f_2 & f_3 & f_1 & f_6 & f_4 & f_5 \\ f_3 & f_3 & f_1 & f_2 & f_5 & f_6 & f_4 \\ f_4 & f_4 & f_5 & f_6 & f_1 & f_2 & f_3 \\ f_5 & f_5 & f_6 & f_4 & f_3 & f_1 & f_2 \\ f_6 & f_6 & f_4 & f_5 & f_2 & f_3 & f_1 \\ \end{array}$


Expressing the elements in full:

$\begin{array}{c|cccccc}

\circ & z & \dfrac 1 {1 - z} & \dfrac {z - 1} z & \dfrac 1 z & 1 - z & \dfrac z {z - 1} \\ \hline z & z & \dfrac 1 {1 - z} & \dfrac {z - 1} z & \dfrac 1 z & 1 - z & \dfrac z {z - 1} \\ \dfrac 1 {1 - z} & \dfrac 1 {1 - z} & \dfrac {z - 1} z & z & \dfrac z {z - 1} & \dfrac 1 z & 1 - z \\ \dfrac {z - 1} z & \dfrac {z - 1} z & z & \dfrac 1 {1 - z} & 1 - z & \dfrac z {z - 1} & \dfrac 1 z \\ \dfrac 1 z & \dfrac 1 z & 1 - z & \dfrac z {z - 1} & z & \dfrac 1 {1 - z} & \dfrac {z - 1} z \\ 1 - z & 1 - z & \dfrac z {z - 1} & \dfrac 1 z & \dfrac {z - 1} z & z & \dfrac 1 {1 - z} \\ \dfrac z {z - 1} & \dfrac z {z - 1} & \dfrac 1 z & 1 - z & \dfrac 1 {1 - z} & \dfrac {z - 1} z & z \\ \end{array}$


Taking the group axioms in turn:


Group Axiom $\text G 0$: Closure

By inspection it can be seen that $\struct {S, \circ}$ is closed.

$\Box$


Group Axiom $\text G 1$: Associativity

From Composition of Mappings is Associative, it follows that $\struct {S, \circ}$ is associative.

$\Box$


Group Axiom $\text G 2$: Existence of Identity Element

We have that:

$\forall n: f_1 \circ f_n = f_n = f_n \circ f_1$

Thus $\struct {S, \circ}$ has an identity element.

$\Box$


Group Axiom $\text G 3$: Existence of Inverse Element

From the above analysis:

\(\ds f_1 \circ f_1\) \(=\) \(\ds f_1\)
\(\ds f_2 \circ f_3\) \(=\) \(\ds f_1\)
\(\ds f_3 \circ f_2\) \(=\) \(\ds f_1\)
\(\ds f_4 \circ f_4\) \(=\) \(\ds f_1\)
\(\ds f_5 \circ f_5\) \(=\) \(\ds f_1\)
\(\ds f_6 \circ f_6\) \(=\) \(\ds f_1\)

Thus every element of $\struct {S, \circ}$ has an inverse.

$\Box$


All the group axioms are thus seen to be fulfilled, and so $\struct {S, \circ}$ is a group.


$\struct {S, \circ}$ has $6$ elements and so is a finite group of order $6$.

$\blacksquare$


Sources