Group Generated by Reciprocal of z and Minus z is Klein Four-Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K_4$ denote the Klein $4$-group.

Let $S$ be the group generated by $1 / z$ and $-z$.


Then $K_4$ and $S$ are isomorphic algebraic structures.


Proof

Establish the mapping $\phi: K_4 \to S$ as follows:

\(\ds \map \phi e\) \(=\) \(\ds z\)
\(\ds \map \phi a\) \(=\) \(\ds -z\)
\(\ds \map \phi b\) \(=\) \(\ds \dfrac 1 z\)
\(\ds \map \phi c\) \(=\) \(\ds -\dfrac 1 z\)


From Isomorphism by Cayley Table, the two Cayley tables can be compared by eye to ascertain that $\phi$ is an isomorphism:


Cayley Table of Klein $4$-Group

The Cayley table for $K_4$ is as follows:

$\begin{array}{c|cccc}
 & e & a & b & c \\

\hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \\ \end{array}$


Group Generated by $1 / z$ and $-z$

The Cayley table for $S$ is as follows:

$\begin{array}{r|rrrr}

\circ & f_1 & f_2 & f_3 & f_4 \\ \hline f_1 & f_1 & f_2 & f_3 & f_4 \\ f_2 & f_2 & f_1 & f_4 & f_3 \\ f_3 & f_3 & f_4 & f_1 & f_2 \\ f_4 & f_4 & f_3 & f_2 & f_1 \\ \end{array}$


Expressing the elements in full:

$\begin{array}{c|cccc}

\circ & z & -z & \dfrac 1 z & -\dfrac 1 z \\ \hline z & z & -z & \dfrac 1 z & -\dfrac 1 z \\ -z & -z & z & -\dfrac 1 z & \dfrac 1 z \\ \dfrac 1 z & \dfrac 1 z & -\dfrac 1 z & z & -z \\ -\dfrac 1 z & -\dfrac 1 z & \dfrac 1 z & -z & z \\ \end{array}$


Sources