Group Homomorphism Preserves Inverses/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ and $\struct {H, *}$ be groups.

Let $\phi: \struct {G, \circ} \to\struct {H, *}$ be a group homomorphism.

Let:

$e_G$ be the identity of $G$
$e_H$ be the identity of $H$


Then:

$\forall x \in G: \map \phi {x^{-1} } = \paren {\map \phi x}^{-1}$


Proof

From Group Homomorphism of Product with Inverse, we have:

$\forall x, y \in G: \map \phi {x \circ y^{-1} } = \map \phi x * \paren {\map \phi y}^{-1}$

Putting $x = e_G$ and $y = x$ we have:

\(\ds \map \phi {x^{-1} }\) \(=\) \(\ds \map \phi {e_G \circ x^{-1} }\)
\(\ds \) \(=\) \(\ds \map \phi {e_G} * \paren {\map \phi x}^{-1}\)
\(\ds \) \(=\) \(\ds e_H * \paren {\map \phi x}^{-1}\) Group Homomorphism Preserves Identity
\(\ds \) \(=\) \(\ds \paren {\map \phi x}^{-1}\)

$\blacksquare$


Sources