Group Induces B-Algebra

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity element is $e$.

Let $*$ be the product inverse operation on $G$:

$\forall a, b \in G: a * b = a \circ b^{-1}$

where $b^{-1}$ is the inverse element of $b$ under the operation $\circ$.


Then the algebraic structure $\struct {G, *}$ is a $B$-algebra.


Proof

First note that by Group Axiom $\text G 0$: Closure:

$\forall a, b \in G: a * b \in G$

and so $B$-Algebra Axiom $(\text {AC})$ holds.


We have that:

$\forall x \in G: x * x = x \circ x^{-1} = e$

by definition of inverse element.


Let $0 := e$.

Then:

$B$-Algebra Axiom $(\text A 0)$: $\quad \exists 0 \in G$
$B$-Algebra Axiom $(\text A 1)$: $\quad \forall x \in G: x * x = 0$


Note that:

\(\ds \exists 0 \in G: \, \) \(\ds 0^{-1}\) \(=\) \(\ds e^{-1}\) Definition of $0$
\(\ds \) \(=\) \(\ds e\) Inverse of Identity Element is Itself
\(\ds \) \(=\) \(\ds 0\) Definition of $0$

and so:

\(\ds \forall x \in G: \, \) \(\ds x * 0\) \(=\) \(\ds x \circ 0^{-1}\) Definition of $*$
\(\ds \) \(=\) \(\ds x \circ e\) Definition of $0$
\(\ds \) \(=\) \(\ds x\) Definition of Identity Element

demonstrating:

$B$-Algebra Axiom $(\text A 2)$: $\quad \forall x \in G: x * 0 = x$


Finally, let $x, y, z \in G$:

\(\ds \paren {x * y} * z\) \(=\) \(\ds \paren {x \circ y^{-1} } \circ z^{-1}\) Definition of $*$
\(\ds \) \(=\) \(\ds x \circ \paren {y^{-1} \circ z^{-1} }\) Group Axiom $\text G 1$: Associativity
\(\ds \) \(=\) \(\ds x \circ \paren {z \circ y}^{-1}\) Inverse of Group Product
\(\ds \) \(=\) \(\ds x \circ \paren {z \circ \paren {y^{-1} }^{-1} }^{-1}\) Inverse of Group Inverse
\(\ds \) \(=\) \(\ds x * \paren {z * y^{-1} }\) Definition of $*$
\(\ds \) \(=\) \(\ds x * \paren {z * \paren {0 \circ y^{-1} } }\) as $0 = e$
\(\ds \) \(=\) \(\ds x * \paren {z * \paren {0 * y} }\) Definition of $*$

This demonstrates:

$B$-Algebra Axiom $(\text A 3)$: $\quad \forall x, y, z \in G: \paren {x * y} * z = x * \paren {z * \paren {0 * y} }$


All axioms of the $B$-algebra have been demonstrated to hold.

Hence the result.

$\blacksquare$