Group Product Inverse Operation with Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity is $e$.

Let $\oplus: G \times G \to G$ be the product inverse of $\circ$ on $G$.

Then:

$\forall x, y \in G: e \oplus \paren {x \oplus y} = y \oplus x$


Proof

\(\ds \forall x, y \in G: \, \) \(\ds e \oplus \paren {x \oplus y}\) \(=\) \(\ds e \oplus \paren {x \circ y^{-1} }\) Definition of Product Inverse Operation
\(\ds \) \(=\) \(\ds e \circ \paren {x \circ y^{-1} }^{-1}\) Definition of Product Inverse Operation
\(\ds \) \(=\) \(\ds e \circ \paren {y \circ x^{-1} }\) Inverse of Group Product
\(\ds \) \(=\) \(\ds e \circ \paren {y \oplus x}\) Definition of Product Inverse Operation
\(\ds \) \(=\) \(\ds y \oplus x\) Group Axiom $\text G 2$: Existence of Identity Element

$\blacksquare$


Sources