Group has Latin Square Property/Proof 1
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group.
Then $G$ satisfies the Latin square property.
That is, for all $a, b \in G$, there exists a unique $g \in G$ such that $a \circ g = b$.
Similarly, there exists a unique $h \in G$ such that $h \circ a = b$.
Proof
\(\ds g\) | \(=\) | \(\ds a^{-1} \circ b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ g\) | \(=\) | \(\ds a \circ \paren {a^{-1} \circ b}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ g\) | \(=\) | \(\ds \paren {a \circ a^{-1} } \circ b\) | Group Axiom $\text G 1$: Associativity | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ g\) | \(=\) | \(\ds e \circ b\) | Group Axiom $\text G 3$: Existence of Inverse Element | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ g\) | \(=\) | \(\ds b\) | Group Axiom $\text G 2$: Existence of Identity Element |
Thus, such a $g$ exists.
Suppose $g, g' \in G$ where $a \circ g = b = a \circ g'$.
Then:
\(\ds g\) | \(=\) | \(\ds e \circ g\) | Group Axiom $\text G 2$: Existence of Identity Element | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a^{-1} \circ a} \circ g\) | Group Axiom $\text G 3$: Existence of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds a^{-1} \circ \paren {a \circ g}\) | Group Axiom $\text G 1$: Associativity | |||||||||||
\(\ds \) | \(=\) | \(\ds a^{-1} \circ b\) | Substitution for $a \circ g$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a^{-1} \circ \paren {a \circ g'}\) | Substitution for $a \circ g'$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a^{-1} \circ a} \circ g'\) | Group Axiom $\text G 1$: Associativity | |||||||||||
\(\ds \) | \(=\) | \(\ds e \circ g'\) | Group Axiom $\text G 3$: Existence of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds g'\) | Group Axiom $\text G 2$: Existence of Identity Element |
Thus uniqueness holds.
To prove the second part of the theorem, let $h = b \circ a^{-1}$.
The remainder of the proof follows a similar procedure to the above.
$\blacksquare$
Sources
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.4$: Theorem $1$