# Group is Connected iff Subgroup and Quotient are Connected

Jump to navigation
Jump to search

## Theorem

Let $G$ be a topological group.

Let $H \le G$ be a subgroup.

The following are equivalent:

- $(1):\quad$ $G$ is connected
- $(2):\quad$ $H$ is connected and the left quotient space $G / H$ is connected
- $(3):\quad$ $H$ is connected and the right quotient space $G / H$ is connected.