Hahn-Banach Separation Theorem/Normed Vector Space/Real Case/Open Convex Set and Convex Set

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \norm \cdot}$ be a normed vector space over $\R$.

Let $\struct {X^\ast, \norm \cdot_{X^\ast} }$ be the normed dual space of $\struct {X, \norm \cdot}$.

Let $A \subseteq X$ be an open convex set.

Let $B \subseteq X$ be a convex set disjoint from $A$.


Then there exists $f \in X^\ast$ and $c \in \R$ such that:

$A \subseteq \set {x \in X : \map f x < c}$

and:

$B \subseteq \set {x \in X : \map f x \ge c}$

That is:

there exists $f \in X^\ast$ and $c \in \R$ such that $\map f a < c \le \map f b$ for each $a \in A$ and $b \in B$.


Proof

Let $a_0 \in A$ and $b_0 \in B$.

Let:

$v_0 = b_0 - a_0$

Let:

$C = v_0 + A - B = \set {v_0 + a - b : a \in A, \, b \in B}$

Lemma

$C$ is open, convex and contains $0$.

$\Box$


Note that:

$v_0 \in C$

if and only if:

$v_0 + a - b = v_0$

for some $a \in A$ and $b \in B$.

That is:

$a = b$

So:

$v_0 \in C$

if and only if:

$A \cap B \ne \O$

Since $A$ and $B$ are disjoint, we therefore have:

$v_0 \not \in C$

Define:

$X_0 = \span \set {v_0}$

Then each $x_0 \in X_0$, there exists a unique $t \in \R$ such that:

$x_0 = t v_0$

From Linear Span is Linear Subspace, we have:

$X_0$ is a linear subspace of $X$.

Define $f_0 : X_0 \to \R$ by:

$\map {f_0} {t v_0} = t$

Let $p_C$ be the Minkowski functional of $C$.

From Minkowski Functional of Open Convex Set in Normed Vector Space recovers Set, we have:

$\map {p_C} {v_0} \ge 1$

From Minkowski Functional of Open Convex Set in Normed Vector Space is Sublinear Functional, we have:

$p_C$ is a Sublinear functional.

With view to apply the Hahn-Banach Theorem: Real Vector Space, we now show that:

$\map {f_0} {x_0} \le \map {p_C} {x_0}$

for each $x_0 \in X_0$.

For $t \ge 0$, we have:

\(\ds \map {f_0} {t v_0}\) \(=\) \(\ds t\)
\(\ds \) \(\le\) \(\ds t \map {p_C} {v_0}\)
\(\ds \) \(=\) \(\ds \map {p_C} {t v_0}\) Definition of Sublinear Functional

For $t < 0$, we have:

\(\ds \map {f_0} {t v_0}\) \(=\) \(\ds t\)
\(\ds \) \(<\) \(\ds 0\)
\(\ds \) \(=\) \(\ds \map {p_C} {t v_0}\) Definition of Minkowski Functional in Normed Vector Space

So:

$\map {f_0} {x_0} \le \map {p_C} {x_0}$

for each $x_0 \in X_0$.

From Hahn-Banach Theorem: Real Vector Space, there exists a linear functional $f : X \to \R$ extending $f_0$ such that:

$\map f x \le \map {p_C} x$

for each $x \in X$.

We now check that $f \in X^\ast$.

That is, that $f$ is bounded.

From Minkowski Functional of Open Convex Set in Normed Vector Space is Bounded, there exists $c > 0$ such that:

$\map {p_C} x \le c \norm x$

for each $x \in X$.

So we have:

$\map f x \le c \norm x$

We then have:

\(\ds -\map f x\) \(=\) \(\ds \map f x\) Definition of Linear Functional
\(\ds \) \(\le\) \(\ds c \norm {-x}\)
\(\ds \) \(=\) \(\ds c \norm x\) Norm Axiom $\text N 2$: Positive Homogeneity

So we have:

$\size {\map f x} \le c \norm x$

for each $x \in X$.

So:

$f \in X^\ast$


We now show that there exists $c \in \R$ such that:

$\map f a \le c \le \map f b$

for each $a \in A$ and $b \in B$.

Let $a \in A$ and $b \in B$.

Then:

\(\ds \map f {v_0 + a - b}\) \(=\) \(\ds \map f {v_0} + \map f a - \map f b\) Definition of Linear Functional
\(\ds \) \(=\) \(\ds \map {f_0} {v_0} + \map f a - \map f b\) since $f$ extends $f_0$
\(\ds \) \(=\) \(\ds 1 + \map f a - \map f b\)

We have that:

$v_0 + a - b \in C$

So, from Minkowski Functional of Open Convex Set in Normed Vector Space recovers Set, we have:

$\map {p_C} {v_0 + a - b} < 1$

so:

\(\ds \map f {v_0 + a - b}\) \(\le\) \(\ds \map {p_C} {v_0 + a - b}\)
\(\ds \) \(<\) \(\ds 1\)

So we have:

$1 + \map f a - \map f b < 1$

So:

$\map f a < \map f b$

for each $a \in A$ and $b \in B$.

So for any fixed $a_0 \in A$, we have:

$\map f {a_0} < \map f b$

So:

$\set {b \in B : \map f b}$ is bounded below.

So, from the Continuum Property, we have that:

$\inf \set {b \in B : \map f b}$

exists.

If:

$c = \inf \set {b \in B : \map f b}$

Then:

$\map f a \le c \le \map f b$

for each $a \in A$ and $b \in B$.

It remains to show that in fact:

$\map f a < c$

suppose that there existed $a' \in A$ with:

$\map f {a'} = c$

Since $A$ is open, there exists $\epsilon > 0$ such that for all $a \in A$ with:

$\norm {a - a'} < \epsilon$

we have $a \in A$.

Note that since $v_0 \not \in C$, we have $v_0 \ne 0$.

In particular, $\norm {v_0} \ne 0$.

So, we have:

$\ds a' + \frac \epsilon {\norm {v_0} } v_0 \in A$

We then have:

\(\ds \map f {a' + \frac \epsilon {\norm {v_0} } v_0}\) \(=\) \(\ds \map f {a'} + \map f {\frac \epsilon {\norm {v_0} } v_0}\) Definition of Linear Functional
\(\ds \) \(=\) \(\ds c + \map {f_0} {\frac \epsilon {\norm {v_0} } v_0}\) since $f$ extends $f_0$
\(\ds \) \(=\) \(\ds c + \frac \epsilon {\norm {v_0} }\)
\(\ds \) \(>\) \(\ds c\)

which contradicts $\map f a \le c$ for each $a \in A$.

So, we have:

$\map f a < c \le \map f b$

for each $a \in A$ and $b \in B$.

$\blacksquare$