Half Angle Formulas/Cosine
< Half Angle Formulas(Redirected from Half Angle Formula for Cosine)
Jump to navigation
Jump to search
Theorem
\(\ds \cos \frac \theta 2\) | \(=\) | \(\ds +\sqrt {\frac {1 + \cos \theta} 2}\) | for $\dfrac \theta 2$ in quadrant $\text I$ or quadrant $\text {IV}$ | |||||||||||
\(\ds \cos \frac \theta 2\) | \(=\) | \(\ds -\sqrt {\frac {1 + \cos \theta} 2}\) | for $\dfrac \theta 2$ in quadrant $\text {II}$ or quadrant $\text {III}$ |
where $\cos$ denotes cosine.
Proof 1
\(\ds \cos \theta\) | \(=\) | \(\ds 2 \cos^2 \frac \theta 2 - 1\) | Double Angle Formula for Cosine: Corollary 1 | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \cos^2 \frac \theta 2\) | \(=\) | \(\ds 1 + \cos \theta\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cos \frac \theta 2\) | \(=\) | \(\ds \pm \sqrt {\frac {1 + \cos \theta} 2}\) |
We also have that:
- In quadrant $\text I$, and quadrant $\text {IV}$, $\cos \dfrac \theta 2 > 0$
- In quadrant $\text {II}$ and quadrant $\text {III}$, $\cos \dfrac \theta 2 < 0$.
$\blacksquare$
Proof 2
Define:
- $u = \dfrac \theta 2$
Then:
\(\ds \cos^2 u\) | \(=\) | \(\ds \frac {1 + \cos 2 u} 2\) | Power Reduction Formulas | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cos \frac \theta 2\) | \(=\) | \(\ds \pm \sqrt {\frac {1 + \cos \theta} 2}\) |
We also have that:
- In quadrant $\text I$, and quadrant $\text {IV}$, $\cos \dfrac \theta 2 > 0$
- In quadrant $\text {II}$ and quadrant $\text {III}$, $\cos \dfrac \theta 2 < 0$.
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.42$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): half-angle formula
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): half-angle formula