Half Angle Formulas/Hyperbolic Sine

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$.

Then:

\(\ds \sinh \frac x 2\) \(=\) \(\ds +\sqrt {\frac {\cosh x - 1} 2}\) for $x \ge 0$
\(\ds \sinh \frac x 2\) \(=\) \(\ds -\sqrt {\dfrac {\cosh x - 1} 2}\) for $x \le 0$

where $\sinh$ denotes hyperbolic sine and $\cosh$ denotes hyperbolic cosine.


Proof

\(\ds \cosh x\) \(=\) \(\ds 1 + 2 \ \sinh^2 \frac x 2\) Double Angle Formula for Hyperbolic Cosine: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds 2 \ \sinh^2 \frac x 2\) \(=\) \(\ds \cosh x - 1\)
\(\ds \leadsto \ \ \) \(\ds \sinh \frac x2\) \(=\) \(\ds \pm \sqrt {\frac {\cosh x - 1} 2}\)


We also have that:

when $x \ge 0$, $\sinh x \ge 0$
when $x \le 0$, $\sinh x \le 0$.

$\blacksquare$


Also see


Sources