Half Angle Formulas/Sine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sin \frac \theta 2\) \(=\) \(\ds +\sqrt {\frac {1 - \cos \theta} 2}\) for $\dfrac \theta 2$ in quadrant $\text I$ or quadrant $\text {II}$
\(\ds \sin \frac \theta 2\) \(=\) \(\ds -\sqrt {\dfrac {1 - \cos \theta} 2}\) for $\dfrac \theta 2$ in quadrant $\text {III}$ or quadrant $\text {IV}$


Proof

Define:

$u = \dfrac \theta 2$


Then:

\(\ds \sin^2 u\) \(=\) \(\ds \frac {1 - \cos 2 u} 2\) Power Reduction Formulas
\(\ds \leadsto \ \ \) \(\ds \sin \frac \theta 2\) \(=\) \(\ds \pm \sqrt {\frac {1 - \cos \theta} 2}\)


We also have that:

In quadrant $\text I$, and quadrant $\text {II}$, $\sin \theta > 0$
In quadrant $\text {III}$, and quadrant $\text {IV}$, $\sin \theta < 0$.

$\blacksquare$