Half Angle Formulas/Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \tan \frac \theta 2\) \(=\) \(\ds +\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\) for $\dfrac \theta 2$ in quadrant $\text I$ or quadrant $\text {III}$
\(\ds \tan \frac \theta 2\) \(=\) \(\ds -\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\) for $\dfrac \theta 2$ in quadrant $\text {II}$ or quadrant $\text {IV}$

where $\tan$ denotes tangent and $\cos$ denotes cosine.

When $\theta = \paren {2 k + 1} \pi$, $\tan \dfrac \theta 2$ is undefined.


Corollary 1

$\tan \dfrac \theta 2 = \dfrac {\sin \theta} {1 + \cos \theta}$


Corollary 2

$\tan \dfrac \theta 2 = \dfrac {1 - \cos \theta} {\sin \theta}$


Corollary 3

$\tan \dfrac \theta 2 = \csc \theta - \cot \theta$


Proof

\(\ds \tan \frac \theta 2\) \(=\) \(\ds \frac {\sin \frac \theta 2} {\cos \frac \theta 2}\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \frac {\pm \sqrt {\frac {1 - \cos \theta} 2} } {\pm \sqrt {\frac {1 + \cos \theta} 2} }\) Half Angle Formula for Sine and Half Angle Formula for Cosine
\(\ds \) \(=\) \(\ds \pm \sqrt {\frac {1 - \cos \theta} {1 + \cos \theta} }\)


Since $\cos \theta \ge -1$, it follows that $\cos \theta + 1 \ge 0$.

When $\cos \theta = -1$ it follows that $\cos \theta + 1 = 0$ and then $\tan \dfrac \theta 2$ is undefined.

This happens when $\theta = \paren {2 k + 1} \pi$.


We have that:

$\tan \dfrac \theta 2 = \dfrac {\sin \dfrac \theta 2} {\cos \dfrac \theta 2}$


Quadrant $\text I$

In quadrant $\text I$, we have:

Sine in First Quadrant: $\sin \dfrac \theta 2 > 0$
Cosine in first Quadrant: $\cos \dfrac \theta 2 > 0$

and so in quadrant $\text I$:

\(\ds \tan \frac \theta 2\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \tan \frac \theta 2\) \(=\) \(\ds +\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\)


Quadrant $\text {II}$

In quadrant $\text {II}$, we have:

Sine in Second Quadrant: $\sin \dfrac \theta 2 > 0$
Cosine in Second Quadrant: $\cos \dfrac \theta 2 < 0$

and so in quadrant $\text {II}$:

\(\ds \tan \frac \theta 2\) \(<\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \tan \frac \theta 2\) \(=\) \(\ds -\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\)


Quadrant $\text {III}$

In quadrant $\text {III}$, we have:

Sine in Third Quadrant: $\sin \dfrac \theta 2 < 0$
Cosine in Third Quadrant: $\cos \dfrac \theta 2 < 0$

and so in quadrant $\text {III}$:

\(\ds \tan \frac \theta 2\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \tan \frac \theta 2\) \(=\) \(\ds + \sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\)


Quadrant $\text {IV}$

In quadrant $\text {IV}$, we have:

Sine in Fourth Quadrant: $\sin \dfrac \theta 2 < 0$
Cosine in Fourth Quadrant: $\cos \dfrac \theta 2 > 0$

and so in quadrant $\text {IV}$:

\(\ds \tan \frac \theta 2\) \(<\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \tan \frac \theta 2\) \(=\) \(\ds -\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\)

$\blacksquare$


Also see


Sources