Hensel's Lemma/P-adic Integers/Lemma 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.


Let $\map F X \in \Z_p \sqbrk X$ be a polynomial.


Let $\alpha_0 \in \Z_p$ be a $p$-adic integer:

$\map F {\alpha_0} \equiv 0 \pmod {p\Z_p}$


Let $T$ be the set of $p$-adic digits.

Let:

$S_1 = \set{\tuple{b_0} \subseteq T^1 : \map F {b_0} \equiv 0 \pmod{p\Z_p} \land b_0 \equiv \alpha_0 \pmod{p\Z_p}}$


Let $d_0$ be the first $p$-adic digit of the canonical expansion of $\alpha_0$.


Then:

$\tuple{d_0} \in S_1$


Proof

Let the $p$-adic expansion for $\alpha_0$ be:

$\alpha_0 = \ds \sum_{n = 0}^\infty d_n p^n$

We have:

\(\ds \alpha_0 - d_0\) \(=\) \(\ds \paren{\sum_{n = 0}^\infty d_n p^n} - d_0\)
\(\ds \) \(=\) \(\ds \sum_{n = 1}^\infty d_n p^n\) Subtract first term from the sum
\(\ds \) \(=\) \(\ds p \paren{\sum_{n = 1}^\infty d_n p^{n-1} }\) Factor $p$ from the sum
\(\ds \) \(\in\) \(\ds p\Z_p\)
\(\ds \leadsto \ \ \) \(\ds d_0\) \(\equiv\) \(\ds \alpha_0 \pmod {p\Z_p}\) Definition of Congruence Modulo an Ideal

From Polynomials of Congruent Ring Elements are Congruent:

$\map F {d_0} \equiv \map F {\alpha_0} \equiv 0 \pmod {p\Z_p}$

Hence:

$\tuple {d_0} \in S_1$

$\blacksquare$