Hensel's Lemma/P-adic Integers/Lemma 9

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.


Let $\map F X \in \Z_p \sqbrk X$ be a polynomial.

Let $\map {F'} X$ be the (formal) derivative of $F$.


Let $\alpha_0 \in \Z_p$ be a $p$-adic integer:

$\map F {\alpha_0} \equiv 0 \pmod {p\Z_p}$
$\map {F'} {\alpha_0} \not\equiv 0 \pmod {p\Z_p}$


Let $T$ be the set of $p$-adic digits.

For each $k \in \N_{>0}$, let:

$S_k = \set{\tuple{b_0, b_1, \ldots, b_{k-1}} \subseteq T^k : \map F {\ds \sum_{n = 0}^{k-1} b_n p^n} \equiv 0 \pmod{p^k\Z_p} \quad \text{and} \quad \ds \sum_{n = 0}^{k-1} b_n p^n \equiv \alpha_0 \pmod{p\Z_p}}$

Let:

$\tuple{b_0, b_1, \ldots, b_{k-1}} \in S_k$.


Then:

$\paren{c, d \in T : \tuple{b_0, b_1, \ldots, b_{k-1}, c}, \tuple{b_0, b_1, \ldots, b_{k-1}, d} \in S_{k+1}} \implies c = d$

Proof

Lemma 7

$x \in \Z_p \implies \exists y \in T : y p^k \equiv x p^k \pmod {p^{k+1}\Z_p}$

$\Box$

Lemma 8

$x, y \in \Z_p \implies \map F {x + y p ^k} \equiv \map F x + y p^k \map {F'} x \pmod {p^{k+1}\Z_p}$

$\Box$

Lemma 10

$\forall x \in \Z_p: p^k x \equiv 0 \pmod{p^{k+1}\Z_p} \implies x \equiv 0 \pmod{p\Z_p}$

$\Box$


Let:

$c, d \in T : \tuple{b_0, b_1, \ldots, b_{k-1}, c}, \tuple{b_0, b_1, \ldots, b_{k-1}, d} \in S_{k+1}$


Let:

$a = \ds \sum_{n = 0}^{k-1} b_n p^n$

We have:

\(\ds a\) \(\equiv\) \(\ds \alpha_0 \pmod{p\Z_p}\) Hypothesis
\(\ds \leadsto \ \ \) \(\ds \map {F'} a\) \(\equiv\) \(\ds \map {F'} {\alpha_0} \pmod{p\Z_p}\) Polynomials of Congruent Ring Elements are Congruent


From Lemma 7:

$\exists b \in T : \map {F'} a \equiv b \pmod{p\Z_p}$

We have:

\(\ds b\) \(\equiv\) \(\ds \map {F'} a \pmod{p\Z_p}\) From above
\(\ds \) \(\equiv\) \(\ds \map {F'} {\alpha_0} \pmod{p\Z_p}\) From above
\(\ds \) \(\not\equiv\) \(\ds 0 \pmod{p\Z_p}\) Hypothesis
\(\ds \leadsto \ \ \) \(\ds p\) \(\nmid\) \(\ds b\)


We have:

\(\ds 0\) \(\equiv\) \(\ds \map F {a + cp^k} - \map F {a + dp^k} \pmod{p^{k+1}\Z_p}\) By hypothesis, $\map F {a + cp^k} \equiv \map F {a + dp^k} \equiv 0 \pmod{p^{k+1}\Z_p}$
\(\ds \) \(\equiv\) \(\ds \map F a + cp^k \map {F'} a - \map F a - dp^k \map {F'} a \pmod{p^{k+1}\Z_p}\) Lemma 8
\(\ds \) \(\equiv\) \(\ds cp^k \map {F'} a - dp^k \map {F'} a \pmod{p^{k+1}\Z_p}\) $\map F a$ terms cancel
\(\ds \) \(\equiv\) \(\ds p^k \map {F'} a \paren{c - d} \pmod{p^{k+1}\Z_p}\) Extract common factor $p^k\map {F'} a$
\(\ds \leadsto \ \ \) \(\ds 0\) \(\equiv\) \(\ds \map {F'} a \paren{c - d} \pmod{p\Z_p}\) Lemma 10
\(\ds \) \(\equiv\) \(\ds b \paren{c - d} \pmod{p\Z_p}\) As $b \equiv \map {F'} a \pmod{p\Z_p}$
\(\ds \leadsto \ \ \) \(\ds p\) \(\divides\) \(\ds b \paren{c - d}\) Congruence Modulo Equivalence for Integers in P-adic Integers
\(\ds \leadsto \ \ \) \(\ds p\) \(\divides\) \(\ds c - d\) Euclid's Lemma for Prime Divisors since $p \nmid b$
\(\ds \leadsto \ \ \) \(\ds c\) \(\equiv\) \(\ds d \pmod p\) Definition of Congruence Modulo Integer
\(\ds \leadsto \ \ \) \(\ds c\) \(=\) \(\ds d\) As $0 \le x, y < p$

The result follows.

$\blacksquare$