Hilbert Cube is Separable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \left({I^\omega, d_2}\right)$ be the Hilbert cube.


Then $M$ is a separable space.


Proof

Consider the set $H$ of all points of $M$ which have finitely many rational coordinates and all the rest zero.

Then $H$ forms a countable subset of $A$ which is (everywhere) dense.



The result follows by definition of separable space.

$\blacksquare$


Sources