Homogeneous Linear Equations with More Unknowns than Equations
Jump to navigation
Jump to search
Theorem
Let $\alpha_{ij}$ be elements of a field $F$, where $1 \le i \le m, 1 \le j \le n$.
Let $n > m$.
Then there exist $x_1, x_2, \ldots, x_n \in F$ not all zero, such that:
- $\ds \forall i: 1 \le i \le m: \sum_{j \mathop = 1}^n \alpha_{ij} x_j = 0$
Alternatively, this can be expressed as:
If $n > m$, the following system of homogeneous linear equations:
\(\ds 0\) | \(=\) | \(\ds \alpha_{11} x_1 + \alpha_{12} x_2 + \cdots + \alpha_{1n} x_n\) | ||||||||||||
\(\ds 0\) | \(=\) | \(\ds \alpha_{21} x_1 + \alpha_{22} x_2 + \cdots + \alpha_{2n} x_n\) | ||||||||||||
\(\ds \) | \(\cdots\) | \(\ds \) | ||||||||||||
\(\ds 0\) | \(=\) | \(\ds \alpha_{m1} x_1 + \alpha_{m2} x_2 + \cdots + \alpha_{mn} x_n\) |
has at least one solution such that not all of $x_1, \ldots, x_n$ is zero.
Proof
Sources
- 1964: Iain T. Adamson: Introduction to Field Theory ... (previous) ... (next): Chapter $\text {I}$: Elementary Definitions: $\S 4$. Vector Spaces