Hyperbolic Cosine in terms of Cosine
Jump to navigation
Jump to search
Theorem
Let $z \in \C$ be a complex number.
Then:
- $\cosh z = \map \cos {i z}$
where:
- $\cos$ denotes the complex cosine
- $\cosh$ denotes the hyperbolic cosine
- $i$ is the imaginary unit: $i^2 = -1$.
Proof
\(\ds \map \cos {i z}\) | \(=\) | \(\ds \frac {e^{i \paren {i z} } + e^{-i \paren {i z} } } 2\) | Euler's Cosine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{-z} + e^z} 2\) | $i^2 = -1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cosh z\) | Definition of Hyperbolic Cosine |
$\blacksquare$
Also see
- Hyperbolic Sine in terms of Sine
- Hyperbolic Tangent in terms of Tangent
- Hyperbolic Cotangent in terms of Cotangent
- Hyperbolic Secant in terms of Secant
- Hyperbolic Cosecant in terms of Cosecant
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$: $(4.22)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 8$: Hyperbolic Functions: $8.75$: Relationship between Hyperbolic and Trigonometric Functions
- 1969: J.C. Anderson, D.M. Hum, B.G. Neal and J.H. Whitelaw: Data and Formulae for Engineering Students (2nd ed.) ... (previous) ... (next): $4.$ Mathematics: $4.3$ Trigonometric identities and hyperbolic functions
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $5$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): cosh or ch
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): hyperbolic function