Hyperbolic Cosine of Complex Number/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.

Then:

$\map \cosh {a + b i} = \cosh a \cos b + i \sinh a \sin b$

where:

$\cos$ denotes the real cosine function
$\sin$ denotes the real sine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function


Proof

\(\ds \map \cosh {a + b i}\) \(=\) \(\ds \cosh a \map \cosh {b i} + \sinh a \map \sinh {b i}\) Hyperbolic Cosine of Sum
\(\ds \) \(=\) \(\ds \cosh a \cos b + \sinh a \map \sinh {b i}\) Cosine in terms of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \cosh a \cos b + i \sinh a \sin b\) Sine in terms of Hyperbolic Sine

$\blacksquare$


Also see