Hyperbolic Secant in terms of Secant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Then:

$\sech z = \sec \paren {i z}$

where:

$\sec$ denotes the secant function
$\sech$ denotes the hyperbolic secant
$i$ is the imaginary unit: $i^2 = -1$.


Proof

\(\ds \sec \paren {i z}\) \(=\) \(\ds \frac 1 {\cos \paren {i z} }\) Definition of Complex Secant Function
\(\ds \) \(=\) \(\ds \frac 1 {\cosh z}\) Hyperbolic Cosine in terms of Cosine
\(\ds \) \(=\) \(\ds \sech z\) Definition of Hyperbolic Secant

$\blacksquare$


Also see


Sources