Hyperbolic Tangent in terms of Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Then:

$i \tanh z = \map \tan {i z}$

where:

$\tan$ denotes the tangent function
$\tanh$ denotes the hyperbolic tangent
$i$ is the imaginary unit: $i^2 = -1$.


Proof

\(\ds \map \tan {i z}\) \(=\) \(\ds \frac {\map \sin {i z} } {\map \cos {i z} }\) Definition of Complex Tangent Function
\(\ds \) \(=\) \(\ds \frac {i \sinh z} {\map \cos {i z} }\) Hyperbolic Sine in terms of Sine
\(\ds \) \(=\) \(\ds \frac {i \sinh z} {\cosh z}\) Hyperbolic Cosine in terms of Cosine
\(\ds \) \(=\) \(\ds i \tanh z\) Definition of Hyperbolic Tangent

$\blacksquare$


Also see


Sources