Ideal of Ring/Examples/Order 2 Matrices with some Zero Entries

From ProofWiki
Jump to navigation Jump to search

Example of Ideal of Ring

Let $R$ be the set of all order $2$ square matrices of the form $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$ with $x, y, z \in \R$.

Let $S$ be the set of all order $2$ square matrices of the form $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$ with $x, y \in \R$.

Then $R$ is a ring and $S$ is an ideal of $R$.


Corollary

$R / S \cong \R$

where:

$R / S$ is the quotient ring of $R$ by $S$
$\cong$ denotes ring isomorphism.


Proof 1

Let $\begin{pmatrix} x_1 & y_1 \\ 0 & z_1 \end{pmatrix}, \begin{pmatrix} x_2 & y_2 \\ 0 & z_2 \end{pmatrix} \in R$.

Then:

\(\ds \begin{pmatrix} x_1 & y_1 \\ 0 & z_1 \end{pmatrix} + \begin{pmatrix} -x_2 & -y_2 \\ 0 & -z_2 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} x_1 - x_2 & y_1 - y_2 \\ 0 & z_1 - z_2 \end{pmatrix}\)
\(\ds \) \(\in\) \(\ds R\)
\(\ds \begin{pmatrix} x_1 & y_1 \\ 0 & z_1 \end{pmatrix} \begin{pmatrix} x_2 & y_2 \\ 0 & z_2 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} x_1 \times x_2 + y_1 \times 0 & x_1 \times y_2 + y_1 \times z_2 \\ 0 \times x_2 + z_1 \times 0 & 0 \times y_2 + z_1 \times z_2 \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} x_1 x_2 & x_1 y_2 + y_1 z_2 \\ 0 & z_1 z_2 \end{pmatrix}\)
\(\ds \) \(\in\) \(\ds R\)

Thus by the Subring Test $R$ is a subring of the ring of order $2$ matrices over $\R$.


We have that, for example, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$

Hence $S \ne \O$.


Let $\begin{pmatrix} x_1 & y_1 \\ 0 & z_1 \end{pmatrix}, \begin{pmatrix} x_2 & y_2 \\ 0 & z_2 \end{pmatrix} \in S$.

\(\ds \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -x_2 & -y_2 \\ 0 & 0 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} x_1 - x_2 & y_1 - y_2 \\ 0 & 0 \end{pmatrix}\)
\(\ds \) \(\in\) \(\ds S\)

and so $S$ is closed under matrix subtraction.


Now let $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \in S$ for real $a, b$.

Let $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in R$.

Then we have:

\(\ds \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} x \times a + y \times 0 & x \times b + y \times 0 \\ 0 \times a + z \times 0 & 0 \times b + z \times 0 \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} x a & x b \\ 0 & 0 \end{pmatrix}\)
\(\ds \) \(\in\) \(\ds S\)

and:

\(\ds \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} a \times x + b \times 0 & a \times y + b \times z \\ 0 \times x + 0 \times 0 & 0 \times y + 0 \times z \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} a x & a y + b z \\ 0 & 0 \end{pmatrix}\)
\(\ds \) \(\in\) \(\ds S\)

Thus, by the Test for Ideal, $S$ is an ideal of $R$.

$\blacksquare$


Proof 2

Consider the mapping $\phi: R \to \R$ defined as:

$\forall \mathbf A \in R: \map \phi {\begin {pmatrix} x & y \\ 0 & z \end {pmatrix} } = z$


It is to be demonstrated that $\phi$ is a ring homomorphism whose kernel is $S$.

Thus:

\(\ds \map \phi {\begin {pmatrix} x_1 & y_1 \\ 0 & z_1 \end {pmatrix} + \begin {pmatrix} x_2 & y_2 \\ 0 & z_2 \end {pmatrix} }\) \(=\) \(\ds \map \phi {\begin {pmatrix} x_1 + x_2 & y_1 + y_2 \\ 0 & z_1 + z_2 \end {pmatrix} }\) Definition of Matrix Entrywise Addition
\(\ds \) \(=\) \(\ds z_1 + z_2\) Definition of $\phi$
\(\ds \) \(=\) \(\ds \map \phi {\begin {pmatrix} x_1 & y_1 \\ 0 & z_1 \end {pmatrix} } + \map \phi {\begin {pmatrix} x_2 & y_2 \\ 0 & z_2 \end {pmatrix} }\) Definition of $\phi$

and:

\(\ds \map \phi {\begin {pmatrix} x_1 & y_1 \\ 0 & z_1 \end {pmatrix} \begin {pmatrix} x_2 & y_2 \\ 0 & z_2 \end {pmatrix} }\) \(=\) \(\ds \map \phi {\begin {pmatrix} x_1 x_2 & x_1 y_2 + y_1 x_2 \\ 0 & z_1 z_2 \end {pmatrix} }\) Definition of Matrix Product (Conventional)
\(\ds \) \(=\) \(\ds z_1 z_2\) Definition of $\phi$
\(\ds \) \(=\) \(\ds \map \phi {\begin {pmatrix} x_1 & y_1 \\ 0 & z_1 \end {pmatrix} } \times \map \phi {\begin {pmatrix} x_2 & y_2 \\ 0 & z_2 \end {pmatrix} }\) Definition of $\phi$

Thus by definition $\phi$ is a ring homomorphism.


By definition of $S$ itself, we have that:

$S \subseteq \map \ker \phi$

Then we have that:

\(\ds \mathbf A\) \(\in\) \(\ds \map \ker \phi\)
\(\ds \leadsto \ \ \) \(\ds \map \phi {\mathbf A}\) \(=\) \(\ds 0\) Definition of Kernel of Ring Homomorphism
\(\ds \leadsto \ \ \) \(\ds \map \phi {\begin {pmatrix} x & y \\ 0 & z \end {pmatrix} }\) \(=\) \(\ds 0\) where $\mathbf A = \begin {pmatrix} x & y \\ 0 & z \end {pmatrix}$
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds 0\) Definition of $\phi$
\(\ds \leadsto \ \ \) \(\ds \mathbf A\) \(\in\) \(\ds S\) Definition of $S$
\(\ds \leadsto \ \ \) \(\ds \map \ker \phi\) \(\subseteq\) \(\ds S\) Definition of $S$

Hence:

$\map \ker \phi = S$


From Kernel of Ring Homomorphism is Ideal:

$S$ is an ideal of $R$.

$\blacksquare$