Idempotent Ring has Characteristic Two

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be an idempotent non-null ring.

Denote with $0_R$ the zero of $R$.


Then $\struct {R, +, \circ}$ has characteristic $2$.


Corollary

$\forall x \in R: -x = x$


Proof

Let $x \in R$.

Then:

\(\ds x + x\) \(=\) \(\ds \paren {x + x}^2\) Definition of Idempotent Ring
\(\ds \) \(=\) \(\ds \paren {x + x} \paren {x + x}\)
\(\ds \) \(=\) \(\ds x \paren {x + x} + x \paren {x + x}\) Ring Axiom $\text D$: Distributivity of Product over Addition
\(\ds \) \(=\) \(\ds x^2 + x^2 + x^2 + x^2\) Ring Axiom $\text D$: Distributivity of Product over Addition again
\(\ds \) \(=\) \(\ds x + x + x + x\) Definition of Idempotent Ring
\(\ds \leadsto \ \ \) \(\ds 0_R\) \(=\) \(\ds x + x\) $\struct {\R, +}$ is a group, so Cancellation Laws apply

Hence the result.

$\blacksquare$


Sources