Idempotent Semigroup/Properties
Jump to navigation
Jump to search
Properties of Idempotent Semigroup
Property $1$
Let $x \circ y = y$ and $y \circ x = x$.
Then for all $z \in S$:
- $z \circ x \circ z \circ y = z \circ y$
and:
- $z \circ y \circ z \circ x = z \circ x$
Property $2$
Let $x \circ y = x$ and $y \circ x = y$.
Then for all $z \in S$:
- $x \circ z \circ y \circ z = x \circ z$
and:
- $y \circ z \circ x \circ z = y \circ z$