Identity Morphism is Unique

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf C$ be a category.

Let $X$ be an object of $\mathbf C$.

Then the identity morphism $\operatorname{id}_X : X \to X$ is unique.


Proof

Let $\operatorname{id}_X^1$, $\operatorname{id}_X^2$ be two identity morphisms for $X$.

By definition, for any morphism $f : Y \to X$, we have:

$\operatorname{id}_X^1 \circ f = f$

In particular, taking $Y = X$ and $f = \operatorname{id}_X^2$, we have:

$\operatorname{id}_X^1 \circ \operatorname{id}_X^2 = \operatorname{id}_X^2$


Similarly, for any morphism $g : X \to Y$, we have:

$g \circ \operatorname{id}_X^2 = g$

So taking $Y = X$ and $g = \operatorname{id}_X^1$ we have:

$\operatorname{id}_X^1 \circ \operatorname{id}_X^2 = \operatorname{id}_X^1$


Putting this together we have:

$\operatorname{id}_X^2 = \operatorname{id}_X^1 \circ \operatorname{id}_X^2 = \operatorname{id}_X^1$

as required.

$\blacksquare$