Identity Property in Semigroup
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a semigroup.
Let $s \in S$ be such that:
- $\forall a \in S: \exists x, y \in S: s \circ x = a = y \circ s$
Then $\struct {S, \circ}$ has an identity.
Proof
Suppose that:
- $\forall a \in S: \exists x, y \in S: s \circ x = a = y \circ s$.
Since $s \in S$, it follows that:
- $\exists v, w \in S: s \circ v = s = w \circ s$.
Let $a \in S$.
Then:
- $\exists x, y \in S: s \circ x = a = y \circ s$.
Thus:
\(\ds a\) | \(=\) | \(\ds s \circ x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds w \circ a\) | \(=\) | \(\ds w \circ s \circ x\) | |||||||||||
\(\ds \) | \(=\) | \(\ds s \circ x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a\) |
\(\ds a\) | \(=\) | \(\ds y \circ s\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ v\) | \(=\) | \(\ds y \circ s \circ v\) | |||||||||||
\(\ds \) | \(=\) | \(\ds y \circ s\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a\) |
Hence:
- $w \circ a = a$ and $a \circ v = a$
for any $a \in S$.
In particular:
- Letting $a = v$ in the first of these gives $w \circ v = v$
- Letting $a = w$ in the second gives $w \circ v = w$.
Thus $v = w \circ v = w$ is the identity element in $S$.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 4$: Neutral Elements and Inverses: Exercise $4.10$