Image under Subset of Relation is Subset of Image under Relation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\mathcal R_1 \subseteq S \times T$ be a relation in $S \times T$.

Let $\mathcal R_2 \subseteq \mathcal R_1$.

Let $A \subseteq S$.


Then:

$\mathcal R_2 \sqbrk A \subseteq \mathcal R_1 \sqbrk A$

where $\mathcal R_1 \sqbrk A$ denotes the image of $A$ under $\mathcal R_1$.


Proof

\(\displaystyle y\) \(\in\) \(\displaystyle \mathcal R_2 \sqbrk A\)
\(\displaystyle \leadsto \ \ \) \(\, \displaystyle \exists x \in A: \, \) \(\displaystyle \tuple {x, y}\) \(\in\) \(\displaystyle \mathcal R_2\) Definition of Image of Subset under Relation
\(\displaystyle \leadsto \ \ \) \(\, \displaystyle \exists x \in A: \, \) \(\displaystyle \tuple {x, y}\) \(\in\) \(\displaystyle \mathcal R_1\) Definition of Subset
\(\displaystyle \leadsto \ \ \) \(\displaystyle y\) \(\in\) \(\displaystyle \mathcal R_1 \sqbrk A\) Definition of Image of Subset under Relation

$\blacksquare$


Sources