Increasing Sum of Binomial Coefficients

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z$ be an integer.


Then:

$\ds \sum_{j \mathop = 0}^n j \binom n j = n 2^{n - 1}$

where $\dbinom n k$ denotes a binomial coefficient.


That is:

$1 \dbinom n 1 + 2 \dbinom n 2 + 3 \dbinom n 3 + \dotsb + n \dbinom n n = n 2^{n - 1}$


Proof 1

\(\ds \sum_{j \mathop = 0}^n j \binom n j\) \(=\) \(\ds \sum_{j \mathop = 1}^n j \binom n j\) as $0 \dbinom n 0 = 0$
\(\ds \) \(=\) \(\ds \sum_{j \mathop = 1}^n n \binom {n - 1} {j - 1}\) Factors of Binomial Coefficient
\(\ds \) \(=\) \(\ds n \sum_{j \mathop = 0}^{n - 1} \binom {n - 1} j\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds n 2^{n - 1}\) Sum of Binomial Coefficients over Lower Index

$\blacksquare$


Proof 2

From the Binomial Theorem:

$(1): \quad \paren {1 + x}^n = \ds \sum_{j \mathop = 0}^n \dbinom n j x^n$

Differentiating $(1)$ with respect to $x$:

\(\ds n \paren {1 + x}^{n - 1}\) \(=\) \(\ds \sum_{j \mathop = 1}^n j \dbinom n j x^{j - 1}\) Power Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds n \paren {1 + 1}^{n - 1}\) \(=\) \(\ds \sum_{j \mathop = 1}^n j \dbinom n j\) setting $x = 1$

Hence the result.

$\blacksquare$




Sources