Indiscrete Space is Path-Connected

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \left({S, \left\{{\varnothing, S}\right\}}\right)$ be an indiscrete topological space.

Then $T$ is path-connected.


Proof

Let $a, b \in S$.

Consider any mapping $f: \left[{0 \,.\,.\, 1}\right] \to S$ such that $f \left({0}\right) = a$ and $f \left({1}\right) = b$.

From Mapping to Indiscrete Space is Continuous, we have that $f$ is ‎continuous.

The result follows by definition of path-connectedness.

$\blacksquare$


Sources