Inductive Definition of Sequence
Jump to navigation
Jump to search
![]() | It has been suggested that this page or section be merged into Principle of Recursive Definition. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Mergeto}} from the code. |
Theorem
Let $X$ be a set.
Let $h \in \N$.
Let $a_i \in X$ for all $i \in \set {1, 2, \ldots, h}$.
Let $S$ be the set of all finite sequences whose codomains are in $X$.
Let $G: S \to X$ be a mapping.
Then there is a unique sequence $f$ whose codomain is in $X$ such that:
- $f_i = \begin{cases} a_i & : i \in \set {1, 2, \ldots, h} \\ \map G {f_1, f_2, \ldots, f_{i - 1} } & : i \ge h + 1 \end{cases}$
Proof
![]() | This needs considerable tedious hard slog to complete it. In particular: tedious To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Also known as
Such a definition for a sequence is also known as a recursive definition.
Sources
- 1971: Robert H. Kasriel: Undergraduate Topology ... (previous) ... (next): $\S 1.18$: Sequences Defined Inductively: Theorem $18.4$
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous): Appendix $\text{A}.12$: Induction