Inertia Principle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {a_n}$ be a sequence in $\R$.

Let $a_n \to l$ as $n \to \infty$.

Let $c \in \R$: such that $c < l$.


Then $\exists N \in \N$ such that:

$\forall n \in \N: n \ge N \implies c < a_n$


Proof

Pick $\epsilon = l - c > 0$ (as $c < l$).

As $a_n \to l$ as $n \to \infty$, then $\exists N \in \N$ such that:

$\forall n \in \N: n \ge N \implies \size {a_n - l} < \epsilon$

Equivalently:

$\forall n \in \N: n \ge N \implies \size {l - a_n} < l - c$

For each $a_n$, either $a_n \ge l$ or $a_n < l$.


If $a_n < l$, then $0 < l - a_n$, so $\size {l - a_n} = l - a_n$.

Then:

\(\ds \forall n \in \N: \, \) \(\ds n\) \(\ge\) \(\ds N\)
\(\ds \leadsto \ \ \) \(\ds \size {l - a_n}\) \(\lt\) \(\ds l - c\)
\(\ds \leadsto \ \ \) \(\ds l - a_n\) \(\lt\) \(\ds l - c\)
\(\ds \leadsto \ \ \) \(\ds a_n\) \(\gt\) \(\ds c\)

If $a_n \ge l$, and $l > c$, then $a_n > c$.

So:

$\forall n \in \N: n \ge N \implies a_n > c$

$\blacksquare$



Note

Not to be confused with the Principle of Inertia.