Infima in Ordered Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ, \preccurlyeq}$ be an ordered group.

Let $x, y, z \in G$ be arbitrary.


Let any one of the sets $\set {x, y}$, $\set {x \circ z, y \circ z}$ or $\set {z \circ x, z \circ y}$ admit an infimum.

Then all three sets admit an infimum, and:

\(\ds \inf \set {x \circ z, y \circ z}\) \(=\) \(\ds \inf \set {x, y} \circ z\)
\(\ds \inf \set {z \circ x, z \circ y}\) \(=\) \(\ds z \circ \inf \set {x, y}\)


Proof

First we recall that by definition of ordered group, $\preccurlyeq$ is compatible with $\circ$:

\(\ds \forall x, y, z \in G: \, \) \(\ds x \preccurlyeq y\) \(\implies\) \(\ds x \circ z \preccurlyeq y \circ z\)
\(\ds \land \ \ \) \(\ds x \preccurlyeq y\) \(\implies\) \(\ds z \circ x \preccurlyeq z \circ y\)


Let $\set {x, y}$ admit an infimum $c$.

Then by definition of infimum:

$(1): \quad c$ is a lower bound of $\set {x, y}$ in $G$
$(2): \quad d \preccurlyeq c$ for all lower bounds $d$ of $\set {x, y}$ in $S$.


Thus we have:

\(\ds c\) \(\preccurlyeq\) \(\ds x\) Definition of Lower Bound of Set
\(\, \ds \land \, \) \(\ds c\) \(\preccurlyeq\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds c \circ z\) \(\preccurlyeq\) \(\ds x \circ z\) Definition of Relation Compatible with Operation
\(\, \ds \land \, \) \(\ds c \circ z\) \(\preccurlyeq\) \(\ds y \circ z\)

Hence $\inf \set {x, y} \circ z$ is a lower bound of $\set {x \circ z, y \circ z}$.


Let $d$ be a lower bound of $\set {x \circ z, y \circ z}$.

Then as $G$ is a group we have that:

$d = d' \circ z$

for some $d' \in G$.

Then:

\(\ds d' \circ z\) \(\preccurlyeq\) \(\ds x \circ z\) Definition of Lower Bound of Set
\(\, \ds \land \, \) \(\ds d' \circ z\) \(\preccurlyeq\) \(\ds y \circ z\)
\(\ds \leadsto \ \ \) \(\ds d' \circ z \circ z^{-1}\) \(\preccurlyeq\) \(\ds x \circ z \circ z^{-1}\) Definition of Relation Compatible with Operation
\(\, \ds \land \, \) \(\ds d' \circ z \circ z^{-1}\) \(\preccurlyeq\) \(\ds y \circ z \circ z^{-1}\)
\(\ds \leadsto \ \ \) \(\ds d'\) \(\preccurlyeq\) \(\ds x\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\, \ds \land \, \) \(\ds d'\) \(\preccurlyeq\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds d'\) \(\preccurlyeq\) \(\ds c\) Definition of Infimum of Set: $d'$ is a lower bound of $\set {x, y}$
\(\ds \leadsto \ \ \) \(\ds d' \circ z\) \(\preccurlyeq\) \(\ds c \circ z\) Definition of Relation Compatible with Operation

Hence $\inf \set {x, y} \circ z$ is a lower bound of $\set {x \circ z, y \circ z}$ which is smaller than an arbitrary lower bound $d$ of $\set {x \circ z, y \circ z}$.

That is, $\inf \set {x, y} \circ z$ is an infimum of $\set {x \circ z, y \circ z}$.

$\Box$


Let $\set {x \circ z, y \circ z}$ admit an infimum $c$.

Then by definition of infimum:

$(1): \quad c$ is a lower bound of $\set {x \circ z, y \circ z}$ in $G$
$(2): \quad d \preccurlyeq c$ for all lower bounds $d$ of $\set {x \circ z, y \circ z}$ in $S$.

As $G$ is a group, there exists $c' \in G$ such that $c' \circ z = c$.


Thus we have:

\(\ds c' \circ z\) \(\preccurlyeq\) \(\ds x \circ z\) Definition of Lower Bound of Set
\(\, \ds \land \, \) \(\ds c' \circ z\) \(\preccurlyeq\) \(\ds y \circ z\)
\(\ds \leadsto \ \ \) \(\ds c' \circ z \circ z^{-1}\) \(\preccurlyeq\) \(\ds x \circ z \circ z^{-1}\) Definition of Relation Compatible with Operation
\(\, \ds \land \, \) \(\ds c' \circ z \circ z^{-1}\) \(\preccurlyeq\) \(\ds y \circ z \circ z^{-1}\)
\(\ds \leadsto \ \ \) \(\ds c'\) \(\preccurlyeq\) \(\ds x\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\, \ds \land \, \) \(\ds c'\) \(\preccurlyeq\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds z \circ c'\) \(\preccurlyeq\) \(\ds z \circ x\) Definition of Relation Compatible with Operation
\(\, \ds \land \, \) \(\ds z \circ c'\) \(\preccurlyeq\) \(\ds z \circ y\)

Hence $z \circ c'$ is a lower bound of $\set {z \circ x, z \circ y}$.


Let $d$ be a lower bound of $\set {z \circ x, z \circ y}$.

As $G$ is a group, there exists $d' \in G$ such that $z \circ d' = d$.


Then:

\(\ds d\) \(\preccurlyeq\) \(\ds z \circ x\) Definition of Lower Bound of Set
\(\, \ds \land \, \) \(\ds d\) \(\preccurlyeq\) \(\ds z \circ y\)
\(\ds z \circ d'\) \(\preccurlyeq\) \(\ds z \circ x\) Definition of $d'$
\(\, \ds \land \, \) \(\ds z \circ d'\) \(\preccurlyeq\) \(\ds z \circ y\)
\(\ds \leadsto \ \ \) \(\ds z \circ d'\) \(\preccurlyeq\) \(\ds z \circ c'\) Definition of Infimum of Set: $z \circ d'$ is a lower bound of $\set {z \circ x, z \circ y}$
\(\ds \leadsto \ \ \) \(\ds d\) \(\preccurlyeq\) \(\ds z \circ c'\) Definition of $d'$

Hence $z \circ c'$ is a lower bound of $\set {z \circ x, z \circ y}$ which is smaller than an arbitrary lower bound $d$ of $\set {z \circ x, z \circ y}$.

That is, $z \circ c'$ is an infimum of $\set {z \circ x, z \circ y}$.

$\Box$


Let $\set {z \circ x, z \circ y}$ admit an infimum $c$.

Then by definition of infimum:

$(1): \quad c$ is a lower bound of $\set {z \circ x, z \circ y}$ in $G$
$(2): \quad d \preccurlyeq c$ for all lower bounds $d$ of $\set {z \circ x, z \circ y}$ in $S$.

As $G$ is a group, there exists $c' \in G$ such that $z \circ c' = c$.


Thus we have:

\(\ds z \circ c'\) \(\preccurlyeq\) \(\ds z \circ x\) Definition of Lower Bound of Set
\(\, \ds \land \, \) \(\ds z \circ c'\) \(\preccurlyeq\) \(\ds z \circ y\)
\(\ds \leadsto \ \ \) \(\ds z^{-1} \circ z \circ c'\) \(\preccurlyeq\) \(\ds z^{-1} \circ z \circ x\) Definition of Relation Compatible with Operation
\(\, \ds \land \, \) \(\ds z^{-1} \circ z \circ c'\) \(\preccurlyeq\) \(\ds z^{-1} \circ z \circ y\)
\(\ds \leadsto \ \ \) \(\ds c'\) \(\preccurlyeq\) \(\ds x\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\, \ds \land \, \) \(\ds c'\) \(\preccurlyeq\) \(\ds y\)

Hence $c'$ is a lower bound of $\set {x, y}$.


Let $d$ be a lower bound of $\set {x, y}$.

Then:

\(\ds d\) \(\preccurlyeq\) \(\ds x\) Definition of Lower Bound of Set
\(\, \ds \land \, \) \(\ds d\) \(\preccurlyeq\) \(\ds y\)
\(\ds z \circ d\) \(\preccurlyeq\) \(\ds z \circ x\) Definition of $d'$
\(\, \ds \land \, \) \(\ds z \circ d\) \(\preccurlyeq\) \(\ds z \circ y\)
\(\ds \leadsto \ \ \) \(\ds z \circ d\) \(\preccurlyeq\) \(\ds z \circ c'\) Definition of Infimum of Set: $z \circ d$ is a lower bound of $\set {z \circ x, z \circ y}$
\(\ds \leadsto \ \ \) \(\ds z^{-1} \circ z \circ d\) \(\preccurlyeq\) \(\ds z^{-1} \circ z \circ c'\) Definition of Relation Compatible with Operation
\(\ds \leadsto \ \ \) \(\ds d\) \(\preccurlyeq\) \(\ds c'\) Definition of $d'$

Hence $c'$ is a lower bound of $\set {x, y}$ which is smaller than an arbitrary lower bound $d$ of $\set {x, y}$.

That is, $c'$ is an infimum of $\set {x, y}$.

Hence by definition of $c'$:

$z \circ \inf \set {x, y} = \inf \set {z \circ x, z \circ y}$

$\Box$


Thus we have shown that if any of the three sets $\set {x, y}$, $\set {x \circ z, y \circ z}$ or $\set {z \circ x, z \circ y}$ admit an infimum, they all do, and:

\(\ds \inf \set {x \circ z, y \circ z}\) \(=\) \(\ds \inf \set {x, y} \circ z\)
\(\ds \inf \set {z \circ x, z \circ y}\) \(=\) \(\ds z \circ \inf \set {x, y}\)

$\blacksquare$


Sources