# Infimum of Bounded Below Set of Reals is in Closure

Jump to navigation
Jump to search

## Contents

## Theorem

Let $\R$ be the real number line under the Euclidean metric.

Let $H \subseteq \R$ be a bounded below subset of $\R$ such that $H \ne \O$.

Let $l = \map \inf H$ be the infimum of $H$.

Then:

- $l \in \map \cl H$

where $\map \cl H$ denotes the closure of $H$ in $\R$.

## Proof

Let $\epsilon \in \R_{>0}$ be a strictly positive real number.

Let $\map {B_\epsilon} l$ be the open $\epsilon$-ball of $l$ in $\R$.

From Distance from Subset of Real Numbers:

- $\map d {l, H} = 0$

Thus by definition of distance from subset:

- $\exists x \in H: \map d {l, x} < \epsilon$

Thus $x \in \map {B_\epsilon} l$.

As $x \in H$ and $x \in \map {B_\epsilon} l$, from the definition of intersection:

- $x \in H \cap \map {B_\epsilon} l$

The result follows from Condition for Point being in Closure.

$\blacksquare$

## Also see

## Sources

- 1975: W.A. Sutherland:
*Introduction to Metric and Topological Spaces*... (previous) ... (next): $3.7$: Definitions: Examples $3.7.13$