Infinite Product of One Plus Reciprocals of Squares

From ProofWiki
Jump to navigation Jump to search


Theorem

\(\ds \prod_{n \mathop = 1}^\infty \paren {1 + \frac 1 {n^2} }\) \(=\) \(\ds \paren {1 + \frac 1 1} \times \paren {1 + \frac 1 4} \times \paren {1 + \frac 1 9} \times \cdots\)
\(\ds \) \(=\) \(\ds \frac {\sinh \pi} \pi\)
\(\ds \) \(=\) \(\ds \frac {e^\pi - e^{-\pi} } {2 \pi}\)


Proof

\(\ds \prod_{n \mathop = 1}^\infty \paren {1 + \frac 1 {n^2 } }\) \(=\) \(\ds \prod_{n \mathop = 1}^\infty \frac {n^2 + 1} {n^2}\)
\(\ds \) \(=\) \(\ds \prod_{n \mathop = 1}^\infty \frac {\paren {n - i} \paren {n + i} } {\paren {n - 0} \paren {n - 0} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \frac {\map \Gamma 1 \map \Gamma 1} {\map \Gamma {1 + i} \map \Gamma {1 - i} }\) Infinite Product of Product of Sequence of $n + \alpha$ over Sequence of $n + \beta$
\(\ds \) \(=\) \(\ds \frac {\map \Gamma 1 \map \Gamma 1} {i \map \Gamma i \map \Gamma {1 - i} }\) Gamma Difference Equation
\(\ds \) \(=\) \(\ds \frac {0! \times 0! \map \sin {i \pi} } {i \pi}\) Gamma Function Extends Factorial, Euler's Reflection Formula
\(\ds \) \(=\) \(\ds \frac {i \sinh {\pi} } {i \pi}\) Hyperbolic Sine in terms of Sine, Factorial of Zero
\(\ds \) \(=\) \(\ds \frac {\sinh {\pi} } \pi\)
\(\ds \) \(=\) \(\ds \frac {e^\pi - e^{-\pi} } {2 \pi}\) Definition of Hyperbolic Sine

$\blacksquare$