Integrable Function is A.E. Real-Valued

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\left({X, \Sigma, \mu}\right)$ be a measure space.

Let $f: X \to \overline{\R}$ be a $\mu$-integrable function.


Then $f \left({x}\right) \in \R$ for almost all $x \in X$.


Proof


Sources